Abstract No: 147

ICT, Mathematics and Statistics

CONNECTIVITY MATRIX REPRESENTATION OF GRAPHS OBTAINED BY GRAPH OPERATIONS ON COMPLETE BIPARTITE GRAPHS

M.G.U.S. Gunawardana^{1*} and A.A.I. Perera^{1,2}

¹Department of Mathematics, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka ²Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka ^{*}umeshasg1996@gmail.com

The connectivity matrix is an adjacency matrix with the property that each cell representing the connection between two nodes receives a value of one. Each cell that does not represent a direct connection gets a value of zero. Connectivity matrices are used in real-world applications such as finding the network tolerance of a network and brain connectivity. Our study mainly focuses on obtaining simple matrix representations for resulting graphs of finite summation and multiplication of $K_{m,m}$. In our previous work, we have shown that the resulting graph of the product of *n* copies of complete bipartite graphs $(K_{m,m})^n$ is also a complete bipartite graph, and the number of edges adjacent to each vertex is given by $2^{n-1} \times m^n$ and the summation of *n* copies of $K_{m,m}$ is not a complete bipartite graph, and the number of edges adjacent to one vertex is given by m(2n-1). These resulting graphs are complicated. In our work, we have shown that the matrix representation of $K_{m,m}$ is the $m \times m$ square matrix (M_m) with all entries equal to M, where $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ which is the matrix representation of $K_{1,1}$. Matrix representation of $(K_{m,m})^n$ is a square matrix of order $(2^{n-1}m^n \times 2^{n-1}m^n)$ with all entries equal to M and this result is proved by mathematical induction where m is the number of vertices in one partite set or degree of one vertex and n represents the number of copies of $K_{m,m}$. The matrix matrix with all entries equal to $1 m^m - J_{2m} \int_{J_{2m}}^{J_{2m}} \cdots J_{2m} \int_{J_{2m}}^{J_{2m}} \cdots J_{2m} \int_{J_{2m}}^{J_{2m}} \cdots J_{2m}^{J_{2m}}$, where J_{2m} is the $2m \times 2m$ matrix with all entries equal to $1 m^m$.

where J_{2m} is the $2m \times 2m$ matrix with all entries equal to 1. This result is also proved using mathematical induction. As an application, we plan to apply these theorems to prepare aeroplane routing plans.

Keywords: Bipartite graph, Connectivity matrix, Matrix product, Matrix summation